ExTC (111) (CB(68) 28/11/17 AM-111

Q. P. Code: 24392

(3 Hours) [Total Marks: 80]	
N.B. : 1) Question No. 1 is Compulsory.	
2) Answer any THREE questions from Q.2 to Q.6.	
3) Figures to the right indicate full marks.	
Q 1. a) Evaluate the Laplace transform of $\sinh(\frac{l}{2})\sin(\frac{\sqrt{3}}{2}l)$	[5]
b) Determine the constants a,b,c,d so that the function $f(z) = x^2 + axy + by^2 + i(cx^2 + dxy + y^2)$	[5]
is analytic.	
c) Find a unit normal to the surface $xy^3z^2 = 4$ at the point (-1,-1, 2).	[5]
d) Obtain half range sine series for $f(x) = x$, $0 < x < 2$.	[5]
Q.2. a) If $u = e^{2x}(x \cos 2y - y \sin 2y)$ then find analytic function $f(z)$ by Milne Thomson Method	[6]
b) Find the Fourier series for $f(x)=9-x^2$, $-3 \le x \le 3$	[6]
c) Find the Laplace transform of the following	
i) $L[t\sqrt{1+\sin t}]$ ii) $L\left[\frac{\sinh 2t}{t}\right]$	[8]
Q 3. a) Prove that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x$	[6]
b) Evaluate inverse Laplace transform using Convolution Theorem $L^{-1}\left[\frac{(s+2)^2}{(s^2+4s+8)^2}\right]$	[6]
c) Show that $\vec{F} = ye^{\gamma} \cos x \hat{i} + xe^{\gamma} \cos x \hat{j} - e^{\gamma} \sin x \hat{k}$ is irrotational vector field. Find ϕ if	
c) Show that $F = ye^{-\zeta}$ we consider F and also evaluate $\int_{P}^{Q} \overline{F} d\overline{r}$ along a curve joining the points P(0,0,0) and Q(-1,2, π).	(\$)
O 4 a) Find the Fourier transform of $f(t) = e^{-it}$	[6]
b) show that the function $f_1(x) = 1$, $f_2(x) = x$ are orthogonal on $(-1, 1)$ and determine the	
constant A & B so that functions $f_1(x) = 1 + Ax + Bx^2$ is orthogonal to both $f_1(x)$ and	10
$f_2(\mathbf{x})$ on that interval.	[6]
Page 1 of 2	

0C4BF3468DABB1001C728E39774743BE

c) Find bilinear transformation which maps the points $z=1$, i,-1 onto the points $w=i$, 0,-i her	nce
find the image of $\left z\right <1$ on to w plane find invariant points of this transformation	[8]
Q 5 a) solve Using the Laplace transform the following system of equations	[6]
$\frac{dX}{dt} = 2X - 3Y, \frac{dY}{dt} = Y - 2X \text{ where } X(0) = 8, Y(0) = 3.$	
b) Find Complex form of the Fourier series for $f(x) = e^{ax}$ in $-\pi < x < \pi$ where 'a' is a	
real constant. Hence deduce that $\frac{\pi}{a \sinh a\pi} = \sum_{n=-\infty}^{\infty} \frac{(-1)^n}{n^2 + a^2}$	[6]
c) Verify Green's Theorem in the plane for $\oint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is	
the boundary of the region defined by $y = x^2$ and $y = \sqrt{x}$.	[8]
Q.6.a) Prove that $J_n^*(x) = J_{n-2}(x) - 2J_n(x) + J_{n+2}(x)$	[6]
b) Find the map of the line x-y=1 by transformation $w = \frac{1}{z}$	[6]
c) Evaluate $\iint_{S} \overline{F} . d\overline{s}$ where $\overline{F} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$ where S is the region bounded by	
$x^2 + y^2 = 4$, $z = 0$, $z = 3$ using Gauss divergence theorem .	[8]

Page 2 of 2

0C4BF3468DABB1001G728F3038

Scanned by CamScanner

Scanned by CamScanner

Q. P. Code: 2439